Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenesFree, publicly-accessible full text available December 1, 2025
-
In compositionally complex materials, there is controversy on the effect of enthalpy versus entropy on the structure and short-range ordering in so-called high-entropy materials. To help address this controversy, we synthesized and probed 40 M4AlC3 layered carbide phases containing 2 to 9 metals and found that short-range ordering from enthalpy is present until the entropy increases enough to achieve complete disordering of the transition metals in their atomic planes. We transformed all these layered carbide phases into two-dimensional (2D) sheets and showed the effects of the order vs. disorder on their surface properties and electronic behavior. This study suggests the key effect that the competition between enthalpy and entropy has on short-range order in multi-compositional materials.more » « lessFree, publicly-accessible full text available January 7, 2026
-
Abstract MXenes are 2D materials with great potential in various applications. However, the degradation of MXenes in humid environments has become a main obstacle in their practical use. Here we combine deep neural networks and an active learning scheme to develop a neural network potential (NNP) for aqueous MXene systems with ab initio precision but low cost. The oxidation behaviors of super large aqueous MXene systems are investigated systematically at nanosecond timescales for the first time. The oxidation process of MXenes is clearly displayed at the atomic level. Free protons and oxides greatly inhibit subsequent oxidation reactions, leading to the degree of oxidation of MXenes to exponentially decay with time, which is consistent with the oxidation rate of MXenes measured experimentally. Importantly, this computational study represents the first exploration of the kinetic process of oxidation of super‐sized aqueous MXene systems. It opens a promising avenue for the future development of effective protection strategies aimed at controlling the stability of MXenes.more » « less
An official website of the United States government
